skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gonzalez, Javier"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Flash-based storage is replacing disk for an increasing number of data center applications, providing orders of magnitude higher throughput and lower average latency. However, applications also require predictable storage latency. Existing Flash devices fail to provide low tail read latency in the presence of write operations. We propose two novel techniques to address SSD read tail latency, including Redundant Array of Independent LUNs (RAIL) which avoids serialization of reads behind user writes as well as latency-aware hot-cold separation (HC) which improves write throughput while maintaining low tail latency. RAIL leverages the internal parallelism of modern Flash devices and allocates data and parity pages to avoid reads getting stuck behind writes. We implement RAIL in the Linux Kernel as part of the LightNVM Flash translation layer and show that it can reduce read tail latency by 7× at the 99.99th percentile, while reducing relative bandwidth by only 33%. 
    more » « less
  2. The IceCube Neutrino Observatory at the geographic South Pole consists of two components, a km2 surface array IceTop and a km3 in-ice array between 1.5 and 2.5 km below the surface. Cosmic ray events with primary energy above a few tens of TeV may trigger both the IceTop and in-ice array and leave a three-dimensional footprint of the electromagnetic and muonic components in the extensive air shower. A new reconstruction based on the minimization of a unified likelihood function involving quantities measured by both IceTop and in-ice detectors was developed. This report describes the new reconstruction algorithm and summarizes its performance tested with Monte Carlo events under two different containment conditions. The advantages of the new reconstruction are discussed in comparison with reconstructions that use IceTop or in-ice data separately. Some possible improvements are also summarized. 
    more » « less
  3. null (Ed.)
    The COVID-19 pandemic demonstrated the critical need for accurate and rapid testing for virus detection. This need has generated a high number of new testing methods aimed at replacing RT-PCR, which is the golden standard for testing. Most of the testing techniques are based on biochemistry methods and require chemicals that are often expensive and the supply might become scarce in a large crisis. In the present paper we suggest the use of methods based on physics that leverage novel nanomaterials. We demonstrate that using Surface Enhanced Raman Spectroscopy (SERS) of virion particles a very distinct spectroscopic signature of the SARS-CoV-2 virus can be obtained. We demonstrate that the spectra are mainly composed by signals from the spike (S) and nucleocapsid (N) proteins. It is believed that a clinical test using SERS can be developed. The test will be fast, inexpensive, and reliable. It is also clear that SERS can be used for analysis of structural changes on the S and N proteins. This will be an example of application of nanotechnology and properties of nanoparticles for health and social related matters. 
    more » « less
  4. Abstract. The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole. It uses 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. An unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. We examine birefringent light propagation through the polycrystalline ice microstructure as a possible explanation for this effect. The predictions of a first-principles model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties include not only the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube light-emitting diode (LED) calibration data, the theory and parameterization of the birefringence effect, the fitting procedures of these parameterizations to experimental data, and the inferred crystal properties. 
    more » « less